Navigation

ICU-Cockpit: Wenn Rechner die Intensiv- und Notfallmedizin unterstützen

 

Das Projekt möchte eine grundlegende Entwicklung in der Notfall- und Intensivmedizin anstossen – und die Arbeitsweise im Klinikalltag bezüglich Diagnostik, Therapie und Risikomanagement wesentlich verbessern.

Projektbeschrieb (laufendes Forschungsprojekt)

Auf der neurochirurgischen Intensivstation wird seit 2014 in Kollaboration mit der ETH Zürich, IBM Research Rüschlikon und dem Industriepartner Supercomputing Systems das Projekt "ICU-Cockpit" entwickelt. Dabei erfasst modernste Informationstechnologie die Daten zahlreicher medizintechnischer Geräte in Echtzeit und einer Auflösung von bis zu 200 Hertz. Die Daten werden zeitsynchronisiert und verschlüsselt gespeichert. Nun geht es darum, dass ICU-Cockpit Artefakte in den Biosignalen erkennen und eliminieren kann. Ausserdem entwickeln wir Algorithmen zur Früherkennung epileptischer Anfälle und sekundärer Hirndurchblutungsstörungen.

Hintergrund

Die Halbwertszeit medizinischen Wissens beträgt wenige Jahre. Der Wissenszuwachs ist für Ärzte nicht mehr zu bewältigen. Zusätzlich nimmt in der "personalisierten Medizin" die Menge an vorhandenen Daten pro Patient exponentiell zu. In der Intensiv- und Notfallmedizin kommen noch Signale in Echtzeit von multiplen Sensoren im und am Körper hinzu. Diese Informationsflut kann – insbesondere in Notfallsituationen – nicht mehr zur raschen Entscheidungsfindung integriert werden.

Ziele

Basierend auf "Data-Mining", maschinellem Lernen und künstlicher Intelligenz werden die enormen Mengen an gespeicherten Daten dazu verwendet, komplexe pathophysiologische Zusammenhänge zu modellieren, um Algorithmen für Frühalarmsysteme und Therapieempfehlungen zu entwickeln.

Bedeutung / Anwendung

Schon die Reduktion von Signal-Artefakten und Fehlalarmen erhöht die Patientensicherheit auf der Intensivstation. Das Erkennen von Risikokonstellationen und die Vorhersage kritischer Komplikationen erlauben es, früher therapeutisch zu intervenieren. Therapieentscheide, heute oft empirisch gefällt, werden durch Datenanalysen und aktuellstes medizinisches Wissen untermauert. Aus der Datenstromanalyse in Echtzeit entstehen neue pathophysiologische Erkenntnisse – und neues Wissen durch selbstlernende Systeme.

Originaltitel

ICU-Cockpit: IT platform for multimodal patient monitoring and therapy support in intensive care and emergency medicine

Projektverantwortliche

  • Prof. Emanuela Keller, Neurochirurgische Intensivstation, Neurochirurgische Klinik, Universitätsspital Zürich
  • Dr. Maria Gabrani, IBM Research GmbH, Cognitive Computing and Industry Solutions

 

 

Weitere Informationen zu diesem Inhalt

 Kontakt

Prof. Emanuela Keller Neurochirurgische Intensivstation, Neurochirurgische Klinik, Universitätsspital Zürich Frauenklinikstrasse 10 8091 Zürich emanuela.keller@usz.ch

Zu diesem Thema